HOE RAAK IK THUIS IN RUSSULA’S

Mirjam Veerkamp, Biologisch Station, Kampswei 27, 9418 PD Wijster
Emma van den Dool, Achter Clarenburg 2, 3511 JJ Utrecht
Mededeling 614 van het Biologisch Station Wijster

The attractive colours found in the genus *Russula* appeal to many mycologists. However, they soon find that identification of the taxa can be difficult. The difficulty arises, in part, on account of the enormous variability in the colour of the pileus, but also because it is essential to evaluate the colour of the spore print carefully, and to examine the spore ornamentation and structure of the pileipellis with a good microscope equipped with an oil immersion lens. The value of additional macroscopical, macrochemical, ecological, and microscopical characters is considered and practical suggestions are made for the simple observation of several characters. The most important publications dealing with *Russula* identification are listed.

Russula’s genieten een grote populariteit. Ze zijn dan ook als geslacht makkelijk te herkennen, hebben grote vruchtlichamen, vaak prachtig gekleurde hoeden en komen voor in allerlei bostypen. In platenboeken worden doorgaans veel soorten afgebeeld. Deze populariteit genieten ze misschien meer onder niet- en pas beginnende mycologen; op beginnersdagen wordt dan ook geregeld aandacht voor dit geslacht gevraagd. Maar ondanks het feit dat het een veel bekeken groep is neemt de populariteit van de groep bij mensen die wat langer naar paddestoelen kijken al snel af.

Deze afnemende populariteit heeft alles te maken met de problemen die het op naam brengen van soorten oplevert. Verschillende soorten kunnen sterk op elkaar lijken en eenzelfde soort kan er nogal eens verschillend uitzien. Zo is de hoedkleur van sommige soorten erg variabel. Het doorwerken van determinatietafellen, meestal in een buitenlandse taal, is een bewerkelijke zaak. Je hebt een sporeen nodig, je moet chemische reacties uitvoeren, en met een microscoop de hoedhuid en sporen bekijken en voor dat laatste heb je zelfs een olie-immersie nodig.

Met deze bijdrage hopen we u verder op weg te helpen met deze mooie en interessante groep soorten.

Hoe herkennen we russula’s?

Russula’s zijn als geslacht niet moeilijk te herkennen. In een enkel geval zou je ze op het eerste gezicht kunnen verwarren met melkwammen waarmee russula’s verwant zijn. Vergelijk maar eens Lactarius vellereus (Schaapje) en R. delica (Witte russula), vroeger Lactarius esuscus genoemd, hetgeen ‘melkwam zonder sap’ betekent. Beide geslachten worden gerekend tot een aparte familie, de Russulaceae, op grond van de voor deze groep kenmerkende structuur van het vlees. Dit vlees bestaat naast langwerpige elementen, de hyfen, uit ronde cellen, de sphaerocyten. Deze ronde cellen die vaak in groepen bijeen liggen zijn de oorzaak van de brokkelig (i.p.v. vezelige) structuur van het vlees en de lamellen.

Een tweede bijzonderheid van deze familie is de ornamentatie van de sporen, die in Melzers reagens donkerblauw kleurt. Verder bezitten Russulaceae kronkelende vaathyden (lactiferen) met een korrelige inhoud die met SV (sulfovaniline) reageren. Bij melkwammen zijn deze vaathyden met melksap gevuld. Behalve het ontbreken van melksap hebben russula’s in tegenstelling tot melkwammen meestal geen aflopende plaatjes en geen talrijke tussenlamellen.

Binnen het geslacht russula worden onderverdelingen gemaakt in secties en subsecties. In de loop der tijd is dat door verschillende bewerkers van russula op een verschillende manier gedaan; in de vorige eeuw door Fries en Quélèt, en in deze eeuw door o.a. Maire (1910), Singer (1932-1935), Schaeffer (1933-1935), Konrad & Jossèrand (1934) en Lange (1940), allen vermeld in Romagnesi (1967). De meest recente indelingen van Europese soorten zijn die van Romagnesi (1967) en Bon (1988). De onderscheiden systematische groepen berusten deels op microscopische kenmerken en het leren herkennen van deze groepen in het veld is vaak nauwelijks mogelijk en biedt daarom weinig houvast om sneller een naam van een russula te vinden.

Eén groep is wel duidelijk herkenbaar en dat is een groep soorten die enigszins los staat van alle andere russula’s en als groep het meest verwant is met de melkwammen: de Compactae. Hiertoe behoren soorten als R. nigricans (Grofplaatrussula) met zwart verkleurend vlees, wel of niet na een korte roodverkleuring en de soorten R. delica (Witte russula) en R. chloroides (Smalplaatrussula) waarvan het vlees na langere tijd slechts licht grijsbruin verkleurt. Soorten van deze groep hebben grote vruchtlappen, stevig vlees en een weinig gedifferentieerde hoedhuid met witte, bruine of zwarte tinte, een lang ingeroide scherpe hoedrand, zoals bij de melkwammen en vele tussenlamellen. Dit laatste is bij russula’s uitzonderlijk.

We zullen ons hier niet verdiepen in de indelingen binnen het geslacht russula, maar ons richten op kenmerken die van belang zijn bij het leren onderscheiden van soorten. Deze kenmerken kunnen we verdelen in een viertal groepen: macroscopische inclusief de kleur van de sporee, macrochemische, oecologische en microscopische kenmerken.
Macроскопische kenmerken

Grootte van het vruchtlichaam. Er bestaan soorten met grote en met kleine vruchtlichamen en alhoewel er binnen een soort variatie in grootte optreedt zijn de soorten duidelijk in grootte-klassen onder te verdelen. Zo heeft R. delica (Witte russula) grote vruchtlichamen en R. odorata (Geurige russula) kleine.

Hoed. De vorm van de hoed verschilt weinig per soort en varieert van halfrondvormig bij jonge exemplaren tot vlak en verdiept bij oudere vruchtlichamen. Russula coerules (Papillirussula) heeft meestal een kenmerkende papil in het hoedeencentrum. Wel een belangrijk kenmerk is de vorm van de hoedrand. Deze kan glad zijn (groep van de Compactae) of licht gevoord (knobbelig), vooral bij oudere exemplaren, maar bij enkele soorten als R. pectinatoides (Onsmakelijke kamrussula) en R. foetens (Stinkende russula) komen al jong sterk radiaal gevoerde hoedranden voor.

De meeste russula's (uitgezonderd de Compactae) hebben een duidelijke gedefinieerde hoedhuid, die bij de verschillende soorten in meer of mindere mate van het vlees aftrekbaar is. Het makkelijk of juist niet aftrekbaar zijn van de hoedhuid verschilt per soort. Zo verschilt R. mairei (Stevige braakrussula) niet alleen van R. emetica (Braakrussula) door een meer gladde hoedrand (tegenover een gestreepte bij R. emetica) maar ook is de hoedhuid bij R. mairei (Stevige braakrussula) minder goed aftrekbaar.

De hoedhuid kan mat, berijpt, of zelfs fluweelig zijn, maar ook glanzend tot zelfs gelatineus. Russula insignis (Verkleurende kamrussula) heeft gele vlokjes op de gestreepte hoedrand. Bij droogte kan een hoedhuid barsten gaan vertonen, maar van nature komt een gebarsten hoedhuid bij R. virescens (Ruve ruussula) en soms bij R. anatina (Gazonruussula) voor.

Binnen het geslacht russula komt een heel scala van hoedkleuren voor. Er zijn soorten met een constante hoedkleur zoals die van R. solaris (Zonnrussula) geel is of die van R. mairei (Stevige braakrussula) rood, maar bij andere soorten kan die kleur sterk variëren, hoewel dat dan meestal binnen een bepaald deel van het spectrum is. Zo kan R. fragilis (Broze russsula) violet, karmijnrood of roze zijn en in het midden vaak groen, grauwgroen, olifgroen of bijna zwart; ook bestaat er een gele variëteit. Voor een juiste determinatie moet je de soort in zoveel mogelijk kleurvarianten kennen.

Naast de variatie in kleur kan het ontkleuren van de hoed problemen geven bij de determinatie. Een hoed kan op de ene plek egaal rood zijn, terwijl de soort elders slechts een zweem rood in de hoed heeft, bijvoorbeeld R. decipiens (Roze geelplaatrusssula) of R. persicina (Kruipwilgrussula). Dit maakt een determinatie lastig omdat je in dit geval bij de determinatie toch moet kiezen voor rode soorten.
Steel. De vorm van de steel is geen belangrijk discriminerend kenmerk, wel zijn er soorten met opvallend korte stelen als R. delica (Witte russula), en ook R. curtipes (Koristeeleussula) heeft vaak een korte steel. Russula violeipes (Paarsstellige pasteurussula) heeft een steel die naar beneden taps toeloopt.

De kleur van de steel die meestal wit is, kan bij verouderden bij enkele soorten kenmerkend veranderen naar grijs door het opnemen van water, bijvoorbeeld bij R. undulata (Zwartpurperen russula) en R. ochroleuca (Geelwitte russula), R. pecinatoi-des (Onsmakelijke kamrussula) en R. insignis (Verkleurende kamrussula) hebben een opvallend roestbruine steelbasis. Ook zijn er soorten met een meer of minder sterke rode of violette zweet op de steel zoals R. nitida (Kleine berkerussula), R. persicina (Krupwilgrussula), R. rosea (Potloodrussula), R. sanguinaria (Bloedrode russula), R. quetletii (Purperrode russula), R. drimeia (Duiwelsbroodruussula) en R. violeipes (Paarsstellige pasteurussula).

Vlees. De consistentie van het steelvlees (evenals het hoedvlees) is verschillend per soort en hoewel elke soort bij ouderdom zachtvlezier wordt zijn sommige soorten opvallend stevig, zoals R. vesca (Smakelijke russula) en soorten uit de Compactae groep terwijl andere soorten juist heel breekbaar zijn en al jong een holle steel hebben zoals R. nitida (Kleine berkerussula).

Het vlees kan typische soortspecifieke verkleuringen vertonen. De verkleuringen moeten bij verse en niet bij verdorogue exemplaren geconstateerd worden. Zwartverkleuring van het vlees na beschadigen treedt op bij R. claroflava (Gele berkerussula) en R. decolorans (Grauwstellige russula), maar ook bij R. nigricans (Groeplaatruussula) en aanverwante soorten. Aan de zwarte verkleuring gaat hier vaak eerst een kenmerkende rodeverkleuring vooraf. Geelverkleuringen van het vlees komen voor bij R. versicolor (Bonte berkerussula), lichtgeel en bij R. puellaris (Vergelende russula), donkergeel. Bij beschadigen van het vlees en de lamellen van R. luteoacta (Geelvlekkende russula) verschijnt na verloop van tijd een intens gele kleur waardoor de soort makkelijk te onderscheiden is van bijvoorbeeld R. emetica (Braakrusula), R. persicina (Krupwilgrussula), R. mairei (Stevige braakrusula) en R. sanguinaria (Bloedrode russula). Het vlees van de groep vissige russula's (R. xerampelina s.l.) wordt na verloop van tijd bruin.

Smaak en geur. Qua smaak worden russula's ingedeeld in scherpe en zachte (niet-scherpe) soorten. Voor het proeven kun je een klein stukje vlees van de hoed met enkele stukjes lamel in de mond nemen, hierop kauwen en daarna weer uitspugen. Je hebt hele scherpe soorten, zoals R. emetica (Braakrusula), R. fragilis (Brose russula) en R. drimeia (Duiwelsbroodruussula) waarvoor je slechts met je tong even de lamel hoeft aan te raken om te weten hoe scherp de soort is, en minder scherpe soorten. Sommige soorten zijn een klein beetje scherp zoals R. parazurea (Berijpte russula) en R. grisea (Duifrussula). We noemen echter alleen die soorten scherp waarvan na het
proeven het branderige gevoel nog lang aanhoudt. Bij zachte of matig scherpe russula's
is de scherpe smaak vlug verdwenen. Moeilijkheden kunnen soorten als **R. undulata**
(Zwartpurpuren russula) geven die als scherp te boek staan maar soms zwak scherp
zijn. Weersomstandigheden en de ouderdom van de vruchtlichamen schijnen ook
invloed op de scherpte te hebben. **Russula pseudointegra** (Kleibosrussula), **R. rosea**
(Potloodrussula) en de hoedhuid van **R. coerulea** (Papilrussula) smaken bitter; deze
smaak kan je alleen achterop de tong waarnemen.

Ook geuren kunnen een betrouwbare kenmerk zijn voor het herkennen van
soorten, al is enige ervaring nodig voor het herkennen en benoemen ervan. Voor de
geur kan men het beste aan de onderzijde van de hoed ruiken daar waar de plaatjes de
steel bereiken. Soms is de geur in de steeibasis geconcentreerd zoals bij **R. turci**
(Jodoformrussula) de jodoformgeur en een visgeur bij **R. xerampelina** s.l. Enkele
typische geuren en de soorten waarbij ze worden waargenomen zijn weergegeven in
Tabel 1.

<table>
<thead>
<tr>
<th>geur</th>
<th>soorten</th>
</tr>
</thead>
<tbody>
<tr>
<td>menthol</td>
<td>rosea, albonigra</td>
</tr>
<tr>
<td>olie-achtig</td>
<td>foetens</td>
</tr>
<tr>
<td>bittere amandelen</td>
<td>laurocerasi, illota</td>
</tr>
<tr>
<td>gummie-achtig</td>
<td>pectinatoïdes</td>
</tr>
<tr>
<td>camembert</td>
<td>amoenoïlens</td>
</tr>
<tr>
<td>zuurjess, amylacetaat</td>
<td>fragilis, olivaceoviolascens, emetica,</td>
</tr>
<tr>
<td></td>
<td>mairei (later honingachtig)</td>
</tr>
<tr>
<td>zwak fruitig</td>
<td>ochroleuca, farinipes, nitida, persicina,</td>
</tr>
<tr>
<td></td>
<td>undulata, versicolor, drimeta</td>
</tr>
<tr>
<td>sterk fruitig</td>
<td>coerulea, insignis, odorata</td>
</tr>
<tr>
<td>abrikozen</td>
<td>risigallina</td>
</tr>
<tr>
<td>appelmoes in blik (met Pelargonium component)</td>
<td>clariana, fellea, pseudointegra, solaris,</td>
</tr>
<tr>
<td></td>
<td>veternosa</td>
</tr>
<tr>
<td>vissig</td>
<td>xerampelina s.l., violepes</td>
</tr>
<tr>
<td>jodoform</td>
<td>turci</td>
</tr>
</tbody>
</table>

Soms verandert de geur ook met het ontwikkelingsstadium. Jonge vruchtlichamen van
R. clariana (Tweegeurruussula) ruiken naar appel, later komt daar een pelargonium
component bij en tenslotte ruiken ze naar vis. De honinggeur van **R. meliloens** (Ho-
ingruussula) komt pas tot uiting nadat de paddestoelen iets zijn ingedroogd. Ook de
oudere vruchtlichamen van **R. veternosa** (Tweekleurige russula) en **R. nitida** (Kleine
berkerussula) gaan honingachtig als **Amanita phalloides** (Groene knolamaniet) geuren.
Lamellen. De lamellen zijn aangewezen tot kort aflopend. Tussenlamellen zijn behalve bij de *Compactae* schaars. Soms is de afstand tussen de plaatjes van belang. Bij *R. nigricans* (Groepplatruussula) staan de lamellen zeer wijd uiteen, bij *R. chloroides* (Smalplatruussula) en *R. densifolia* (Fijnplatruussula) staan ze daarentegen dicht bijeen. Ook is de vorm van de lamel van belang. Is deze breed en afgerond naar de rand zoals bij *R. xerampelina* (Roodvoetrussula) of juist smal en scherp zoals bij *R. delica* (Witte ruussula) (Figuur 1).

![Diagram](image)

Figuur 1. Lamelvormen. a. breed en afgerond. b. smal en scherp.

Russula fragilis (Broze ruussula) heeft meestal een fijn gezaagde lamelrand en bij *R. illota* (Spikkelsniveauruussula) is die rand gespikkeld. De kleur van de lamellen hangt af van de rijpheid van de sporen. Als in een sleutel naar de kleur van de plaatjes gevraagd wordt dan kan dat alleen beoordeeld worden aan rijpe volwassen exemplaren. Sommige soorten hebben witte lamellen maar toch een creme (*R. emetica*), een blauw-grijze (*R. mairei*) of blauwgroene reflex (*R. chloroides, R. delica*). Om dat vast te stellen kan men het beste de paddestoel omdraaien en in de lamellen kijken waarbij men de hoed licht heen en weer beweegt.

Bijna alle ruussula's hebben makkelijk verbrokkelende lamellen behalve *R. cyanoxantha* (Regenboogruussula) waar de lamellen vettig aanvoelen en niet breken als je eroverheen wijft.

Kleur van de sporee. De kleur van de sporee is een belangrijk kenmerk, dat al in een vroeg stadium van de sleutels gebruikt wordt. De kleur varieert van wit tot bijna oranje en is binnen zekere grenzen een constant soortskenmerk. Om een goede sporee te krijgen kun je tijdens het sporuleren het vruchtlichaam het beste of met de steel in een klein laagje water zetten, of een vochtige tissue over de hoed leggen, en de gehele opstelling met een kap tegen uitdrogen afsluiten. De ervaring leert dat als je de vruchtlichamen eerst in de koelkast legt het sporuleren daarna bijna altijd slecht gaat (onverklaarbaar als je weet dat het 's nachts buiten ook afkoelt).

Voordat een sporee kleur wordt vastgesteld moeten eerst de sporen (met een dekglaasje) bijeen geveegd worden. Voor het vaststellen van de kleur gebruikt men meestal de 14 delige kleurenschaal van Romagnesi (1967). Maar ook andere kleurencodes zijn bruikbaar. Er zijn vertaalsleutels beschikbaar. Het bepalen van de kleur blijft een moeilijke zaak, de dikte van de laag sporen is deels ook bepalend voor de kleur.

-156-
Daarom mag deze laag niet te dun maar ook niet te dik zijn. Ook moet men niet te lang wachten met het vaststellen van de kleur omdat de kleur in de loop van de tijd donkerder wordt. Verder heeft het vochtgehalte invloed op de kleur.

Tenslotte willen we erop wijzen dat heruitgaven van de kleurencode van Romagnesi, ook de herdruk van de monografie van Romagnesi van 1985 zelf, afwijken van die van de oorspronkelijke druk. We raden dan ook aan om bij het determineren altijd te kijken waar je uitkomt als je een sporeekleur lichter of donkerder benoemt. Voor degenen die niet beschikken over kleurencodes wordt in Tabel 2 ter vergelijking een overzicht gegeven van de sporeekleuren volgens Romagnesi van enkele in Nederland algemeen voorkomende soorten.

TABEL 2
De sporeekleuren volgens Romagnesi (1967) van enkele (vrij) algemeen voorkomende soorten

<table>
<thead>
<tr>
<th>Wit tot bijna wit</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ia</td>
<td>cyanoxantha, heterophylla, vesca, maiorci, undulata</td>
</tr>
<tr>
<td>Ia-b</td>
<td>emetica, ochroleuca</td>
</tr>
<tr>
<td>Ib</td>
<td>delica, fragilis</td>
</tr>
<tr>
<td>Creme</td>
<td></td>
</tr>
<tr>
<td>IIa</td>
<td>ionochlora</td>
</tr>
<tr>
<td>IIa-b</td>
<td>parazurea</td>
</tr>
<tr>
<td>IIb</td>
<td>amoenoelens</td>
</tr>
<tr>
<td>IIIb-c</td>
<td>aeruginea</td>
</tr>
<tr>
<td>IIc</td>
<td>grisea</td>
</tr>
<tr>
<td>IIc-d</td>
<td>persicina</td>
</tr>
<tr>
<td>IIId-IIla</td>
<td>sardonia, queletii</td>
</tr>
<tr>
<td>Oker</td>
<td></td>
</tr>
<tr>
<td>IIIa-b</td>
<td>megacantha, nitida</td>
</tr>
<tr>
<td>III(a)b(c)</td>
<td>velenovskyi</td>
</tr>
<tr>
<td>IIIb-c</td>
<td>claroflava</td>
</tr>
<tr>
<td>Gele</td>
<td></td>
</tr>
<tr>
<td>IVa</td>
<td>turci</td>
</tr>
<tr>
<td>IVb</td>
<td>coerulea, veternosa, pseudointegra</td>
</tr>
<tr>
<td>IVc</td>
<td>odorata</td>
</tr>
<tr>
<td>IVd</td>
<td>risigallina</td>
</tr>
<tr>
<td>IVe</td>
<td>decipiens</td>
</tr>
</tbody>
</table>
Macrochemische kenmerken

Chemische reacties kunnen zeer handige hulpmiddelen zijn bij het herkennen van soorten en soortengroepen; het werkt echter alleen bij vers materiaal.

Inwrijven met ijzersulfaat op de steel geeft bij de meeste soorten een lichtroze reactie, bij de groep rond de vissige russula’s (R. xerampelina s.l.) echter een groene reactie. *Russula cyanoxantha* (Regenboogrussula) reageert in eerste instantie helemaal niet, maar na verloop van tijd verkleurt de beschadigde plek grijsgroen. *Russula vesca* (Smakelijke russula) en *R. heterophylla* (Vorkplaatrussula) geven daarentegen een sterke zalmroze reactie te zien.

Guajac kristallen opgelost in 70% alcohol laten bij sommige soorten een blauwe reactie zien. De snelheid van verkleuren en de intensiteit van de kleuring is per soort verschillend. Op deze manier is *R. fragilis* (Brose russula), met zwakke en langzame reactie te onderscheiden van de erop gelijkende *R. olivaceoviolascens* (Zwartrode russula), met sterke reactie en de minder bekende gele variëteit van *R. fragilis* (var. *gilva*) te onderscheiden van *R. raoultii* (Citroengele russula). Fenol veroorzaakt bij *R. olivacea* (Gerimpelde russula) een purperrode reactie in plaats van de algemene bruinrode verkleuring. Met ammonia verkleurt de steelbasis van *R. insignis* (Verkleurende kamrussula), die normaal roestkleurig is, oranjerood.

Oecologische kenmerken

Soorten hebben ook een verschillende voorkeur voor biotopen. Zo zal je *R. olivacea* (Gerimpelde russula) nooit op zure zandgrond tegenkomen en *R. ochroleuca* (Geelwitte russula) zelden op de klei. Gegevens over de standplaats kunnen dus een handig hulpmiddel zijn bij het op naam brengen van soorten. Maar voorkeuren van soorten voor biotopen en waardplanten kunnen per streek en land verschillen en in gemengde opstanden is het vaak moeilijk te bepalen, met welke boom een soort een verbinding is aangegaan. Dit geeft aan dat dergelijke kenmerken minder geschikt zijn als sleutelkenmerken.

5. *Russula undulata*—De Zwartpurperen russula heet een scherpe soort te zijn, maar is ook wel eens zwak tot nauwelijks scherp. De steel verkleurt sterk grijs.

Door Keizer (1993) is vastgesteld dat op het zand in Nederland de wegbermen momenteel rijker aan russulasoorten zijn dan de er aanwezige bossen. Dit is het gevolg van een ophoping van stikstofrijk strooisel in het bos welke desastreus is voor mycorrhizasoorten. Russulasoorten zijn de laatste decennia dan ook sterk achteruitgegaan; meer dan 50% van de soorten staan vermeld op de Rode Lijst (Arnolds & Van Ommering, 1996)

Microscopische kenmerken

Er zijn twee manieren om russula’s te leren herkennen. Je kunt er een aantal in het veld leren met duidelijke kenmerken, zeker als je met iemand meeloopt die je erop wijst. Je kunt ook leren determineren waarbij je gebruik maakt van microscopische kenmerken. In het begin vergt dit weliswaar een tijdseisvestering zonder dat je veel soorten leert, maar op den duur kun je de meeste russula’s op naam brengen.

Er bestaan sleutels voor russula’s die geheel gebaseerd zijn op macroscopische en macrochemische kenmerken aangevuld met ecologische kenmerken (Buyck, 1990). De praktijk leert dat je in dat geval lang niet altijd tot een definitieve determinatie kunt komen (Verbeken & Walleyn, 1997). Voor een zekere determinatie zul je vaak microscopische kenmerken nodig hebben, in elk geval om je macroscopische determinatie te controleren.

De belangrijkste microscopische kenmerken zitten in de hoedhuid en de sporenoornamentatie. De basidiën en de cystiden op de lamellen zijn betrekkelijk eenvormig en van weinig belang voor het op naam brengen van de soorten. Wel is er een positief verband tussen de scherpte van een soort en het aantal cystiden en de mate waarneem de cystiden op SV (sulfovanilline) reageren. Bij R. albonigra (Zwartwitte russula) zijn de cystiden gevuld met gele oledruppels (in een vers preparaat in water bekijken).

Om snel vertrouwd te raken met de microscopische begrippen en kenmerken kun je van bekende soorten de hoedhuid en de sporen bestuderen zodat je leert wat je moet zien. Daarom worden hierna steeds zoveel mogelijk voorbeelden gegeven van soorten die makkelijk te vinden zijn.

De eenvoudigste manier om de hoedhuid te bestuderen is om een stukje hoedhuid van het midden van de hoed af te nemen en in water te leggen; in congo rood kunnen bepaalde kenmerken verdwijnen (zie verder). Je kunt natuurlijk ook een radiolare coupe door de hoedhuid maken. Dat is lastiger, maar je kunt wel meteen de lactiferen in de subcutis, het onderste deel van de hoedhuid, zien (Figuur 2).

In de epicutis, het bovenste gedeelte van de hoedhuid, kunnen we naast de gewone hoedhuidhyfen, dermatocystiden en/of primordiaalhyfen aantreffen.

Dermatocystiden vallen direct op door de grootte en de inhoud van de cellen. Ze zijn gevuld met een gelige korrelige inhoud die meer of minder sterk violet tot bijna zwart verkleurt in SV. Soms treedt verkleuring alleen op na behandeling met het

sterkere sulfobenzaldehyde, SBA. De vorm, breedte, mate van gesepteerdheid en het aantal dermatocystiden is soortsspecifiek. In Figuur 3 worden de meest voorkomende vormen weergegeven. Het meest komen de enkelvoudige cilindrische vorm met afgeronde top en de clavate vorm voor. Bij enkele soorten zijn er incrustaties op de dermatocystiden waar te nemen: R. velenovskyi (Schotelrussula), R. paludosa (Appelrussula) en R. aurantiaca (Oranje ruusula).

Primordialhyfen zijn lange, dwarsgepenseerde hyfen die zich onderscheiden van de dermatocystiden doordat ze smaller zijn en geen korrelige inhoud hebben, die met SV kleurt en van de hoedhuidhyfen doordat ze lang zijn en er kristallen tegen de celwand aan zitten. Deze kristallen, die bovendien zuurbestendig zijn, zijn zichtbaar in
water (in congorood lossen ze op), maar het best zijn ze te zien door ze te kleuren in carbolfuchsine, CF. Hiervoor het preparaat gedurende vijf minuten in carbolfuchsine leggen en het vervolgens in 3% HCl enkele minuten ontkleuren. De rode korrels zijn nu duidelijk waar te nemen. Primordiaalhyfen kunnen breed zijn of juist smal. Ook de grootte en de plaats van de korrels is van belang (Figuur 4). Zo kunnen ze vooral aan de top zitten of juist aan de basis.

Figuur 3. Diverse vormen van dermatocystiden. A: cyllindrisch met afgeronde top (R. undulata, R. vesca), B: clavaat (R. decipiens), C: toegespitst (R. amoenolens (1), R. grisea (2)), D: vertakte top (R. adusta, R. densifolia), E: gesepteerd (R. emetica (1), R. nitida (2)).

Het onderscheid tussen dermatocystiden en primordialhyfen is niet altijd even duidelijk. Van sommige elementen kunnen we op grond van de vorm niet uitmaken waartoe ze gerekend moeten worden. In zulke gevallen zijn de chemische reacties doorslaggevend bij het benoemen. De dermatocystiden van R. velenovskyi (Schotelrussula) zijn lang, slank en gesepteerd en bovendien geïncrusteerd (CF+). Wel verkleuren ze grijs in SV, hetgeen in dit geval de doorslag geeft. Russula risigillina (Abrikozenrussula) heeft primordialhyfen die lang, slank en geïncrusteerd zijn, maar Romagnesi (1967) constateert dat ze heel zelden ook zwart verkleuren met SBA.

Figuur 5. Verschillende vormen van epikutishyfen.

Russula cuprea (Donkere geelplaatrussula) heeft kenmerkende uitstulpingen in de hyfen en R. olivacea (Gerimpelde russula) heeft ampullenvormige verwijdingen. Tenslotte vinden we bij R. vesca (Smakelijke russula) en R. heterophylla (Vorklaattrussula) opvallend dikwandige spits toelopende hyfen. Tabel 3 geeft een overzicht van de belangrijkste verschillen tussen de drie hoofdhiudelementen.
TABEL 3

Belangrijkste verschillen tussen dermatocystiden, primordialhyfen en epicutishyfen

<table>
<thead>
<tr>
<th></th>
<th>korrelige inhoud SBA+</th>
<th>incrustaties CF+</th>
<th>breed</th>
<th>lang</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dermatocystiden</td>
<td>+</td>
<td>(+)</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Primordialhyfen</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Epicutishyfen</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Bij de meeste soorten treffen we tussen de epicutishyfen of dermatocystiden of primordialhyfen aan. Enkele soorten bezitten geen van beide elementen zoals *R. anthracina* (Antracietrussula) en *R. nigricans* (Grofplaatrussula) uit de *Compactae*. In het geval dermatocystiden in deze groep wel aanwezig zijn, zijn ze schaars, eenvoudig van vorm, nooit clavaat of spoelvormig, en reageren ze alleen met SBA, terwijl de reactie met SV meestal zwak of afwezig is.

Ook bij *R. virescens* (Ruwe russula), de soorten rond *R. amoena* (Pastelrussula), zoals *R. violeipes* (Paarsstelige pastelrussula) en de verwante soorten van *R. olivacea* (Gerimpelde russula), ontdoen dermatocystiden. Bij enkele soorten zijn naast dermatocystiden ook primordialhyfen aanwezig. Er kunnen dus vier typen

TABEL 4

Soorten met een verschillend hoedhuidtype

d: dermatocystiden, p: primordialhyfen, +: aanwezig, -: afwezig

<table>
<thead>
<tr>
<th>-d/-p</th>
<th>+d/-p</th>
<th>-d/+p</th>
<th>+d/+p</th>
</tr>
</thead>
<tbody>
<tr>
<td>nigricans</td>
<td>delica</td>
<td>pseudointegra</td>
<td>carminipes</td>
</tr>
<tr>
<td>anthracina</td>
<td>densifolia</td>
<td>risigallina</td>
<td>laeta</td>
</tr>
<tr>
<td></td>
<td>cyanoxantha</td>
<td>turci</td>
<td></td>
</tr>
<tr>
<td>virescens</td>
<td>vesca</td>
<td>claroflava</td>
<td></td>
</tr>
<tr>
<td>violeipes</td>
<td>parazurea</td>
<td>ochroleuca</td>
<td>rosea (=lepida)</td>
</tr>
<tr>
<td>olivacea</td>
<td>solaris</td>
<td>amoenolens</td>
<td></td>
</tr>
<tr>
<td></td>
<td>emetica</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>fragilis</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>drimeia</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>nitida</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>odorata</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>xerampelina</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cuprea</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>veteranosa</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
hoedhuiden onderscheiden worden: zonder dermatocystiden (en zonder primordiaalhyfen), met dermatocystiden (SV+ of SBA+), met primordiaalhyfen, en met beide elementen. In Tabel 4 worden voorbeelden gegeven van soorten waar de vier typen kunnen worden aangetroffen. De meeste soorten hebben alleen dermatocystiden.

De sporen van russula variëren van elliptisch tot rond. Om de sporen goed te kunnen bestuderen bekijken we ze met een vergroting van ten minste 1000x in Melzers reagens, waarin de ornamentatie dan blauwzwart wordt. Somsmieren het makkelijk om met een vrij open diafragma te kijken (Keizer, 1990).

Het interpreteren van de ornamentatie van de sporen en omgekeerd het vertalen van de beschrijvingen naar wat je ziet is een kunst op zich. Allereerst kun je kijken wat de basisvorm van de uitsteeksels is: zijn dat puntjes, wratjes of stekels (Figuur 6a). Daarbij is de hoogte en de vorm van de uitsteeksels van belang. Staan deze uitsteeksels geïsoleerd of vormen ze bijvoorbeeld kettinkjes of zijn ze verbonden met dunne lijntjes, vormen ze meer een berglandschap of gaan ze op in kammen (Figuur 6b). We kijken naar de ligging van de kettinkjes en de kammen ten opzichte van elkaar; is dat parallel of anastomoseren ze?

Figuur 6a, b en c. Sporenornamentatie.

c. 1: gestreep, zebriert, zébrées, 2: incompleet netwerk, partiell netzig/partiell retikuliert, subréticulées, 3: geheel netwerk, netzig/retikuliert, réticulées.
En tenslotte bekijken we of de ornamentatie in zijn geheel een onvolledig of volledig netwerk vormt (Figuur 6c) en of dat netwerk open of dicht is. Omdat we voor de beschrijving van de sporen op niet-Nederlandse beschrijvingen moeten terugvallen zijn in figuren 6 a t/m c ook de Franse en Duitse begrippen vermeld. In de praktijk zal de ornamentatie een combinatie van de genoemde 'vormen' zijn.

De plek boven de apiculus, de plage, is bij enkele groepen (o.a. *Compactae* en *Ingratae*) slecht of niet zichtbaar doordat deze niet of heel weinig amyloid is. Tenslotte moet opgemerkt worden dat de maat van de sporen altijd exclusief de ornamentatie wordt opgegeven (uitgezonderd Schaeffer, 1952).

Belangrijkste determinatiesleutels

De sleutel van *Bon* dateert uit 1988. Ook hierin wordt naar de sporeekleur en de microscopische kenmerken gevraagd. De indeling is zeer praktisch, maar soms zo sterk doorgevoerd dat forma’s in aparte subsecties terecht zijn gekomen. Door het hanteren van een eng soortsconcept is het aantal onderscheiden taxa waarschijnlijk te hoog.

Rayner (1968-1970) heeft tabellen voor Engeland gemaakt. Twee analytische tabellen waarvan er één geheel gebaseerd is op macroscopische kenmerken (hoedkleur, lamelkleur en scherpte) en één op sporeekleur en microscopische kenmerken van de hoedhuid en de sporen. Daarnaast zijn synoptische tabellen opgenomen en schematische overzichten van kenmerken gegeven. Ook is per soort een korte beschrijving
opgenomen. De nomenclatuur is verouderd en het aantal opgenomen soorten is voor Nederland te klein.

Binnenkort verschijnt het eerste deel van de monografie van Sarnari in het Italiaans met kleurenplaten.

Plaatwerken

Met dank aan Thomas Kuypers voor de discussies en het commentaar op een eerdere versie van het manuscript en aan Lenie Bakker voor het ter beschikking stellen van de dia's afgedrukt op p. 159-162. De kleuren kunnen bij reproductie iets zijn gewijzigd.

Literatuur

-171-

NATUUR en BOEK in Naturalis

specialist voor natuurliefhebber, geoloog en bioloog!

Uw specialist maakt nu deel uit van het Nationaal Natuurhistorisch Museum Naturalis te Leiden

Goede dienstverlening, grote voorraad

Bezoekadresse: Pesthuislaan 7 - Telefoon 071 568 7691